Навигация по сайту

Первый этап в управлении качеством эксплуатационной работы
российских железных дорог

Информационная подсистема многоуровневой системы управления и
обеспечения безопасности движения поездов (АСУ МС)

Автоматизированное управление разработкой проекта АСУ МС с
использованием пакета MS PROJECT

Разработка бизнес-плана инвестиционного проекта «Многоуровневая
система управления и обеспечения безопасности движения поездов»

Оценка вероятности возникновения опасных отказов при перезапуске
двухканальных систем

Интернет-технологии в управлении распределенными системами и на
железнодорожном транспорте

Статистическая обработка результатов измерений временных
характеристик web - приложений.

Структуризация тематического мониторинга геоинформационного
портала отрасли

Автоматизированное рабочее место оператора группы учета
локомотивного депо (АРМ ТЧУ)

Автоматизированное рабочее место оперативно-ситуационного
анализа диспетчерского центра управления движением поездов (АРМ ОСА)

Влияние синхронизации на помехоустойчивость приема данных
по узкополосному каналу связи

Системы и средства обеспечения безопасности движения поездов
метрополитена

Повышение эффективности использования частот диапазона 160 МГц
на железных дорогах.

Построение единой системы нумерации общетехнологической
телефонной связи (ОБТС)

Основные направления развития цифровых сетей технологической
связи ОАО «РЖД»

Особенности построения модемов в цифровых системах технологической
радиосвязи стандарта TETRA на железнодорожном транспорте

О фазовом методе повышения устойчивости сетей связи в условиях
возникновения тупиковых ситуаций

К вопросу обеспечения устойчивого функционирования систем связи
и автоматизации на железнодорожном транспорте

Перенапряжение во вторичных цепях электроустановок, питающихся
от системы электроснабжения ДПР

Реализация комплексной программы оптимизации эксплуатационной
работы сети железных дорог России

Мониторинг технического и коммерческого состояния грузовых
вагонов в системе ДИСПАРК

Определение годности грузовых вагонов для перевозок по результатам
натурного осмотра

Экономический критерий оценки эффективности вариантов использования
после выгрузки вагонов стран содружества

Обоснование новой системы взаиморасчетов за пользование грузовыми
вагонами собственности других государств с учетом дальности
перевозки грузов

Дисперсия наработки до опасного отказа системы.

Среднесуточные графики нагрузки за характерные дни Указанные особенности хода графиков нагрузки тяговых подстанций позволяют применить весь спектр моделей прогноза, доступных в комплексе «Энергостат». Однако на практике применяются квазиоптимальные когерентный и некогерентный методы приема из-за невозможности сделать приемники малочувствительными к случайным изменениям характеристик канала и параметрам принимаемых сигналов, особенно при организации связи с подвижными объектами. — вероятность перехода за один шаг из i-й вершины в вершину r; путь — цепь последовательно соединенных однонаправленных дуг с началом в вершине i и окончанием в вершине у, вес пути ; петля есть частный случай замкнутого контура — в ней входящие и выходящие дуги сливаются в одну дугу, вес петли Сj=рij замкнутый контур — это цепь последовательно соединенных однонаправленных дуг, в которой выход конечной вершины в цепи соединен с начальной вершиной в цепи; вес j-го контура разложение графа — часть графа, не содержащая выделенных вершин и связанных с ними дуг; вес разложения ∆Gi рассчитывается с учетом исключения из графа вершины i и связанных с ней дуг; вес разложения ∆GisH или ∆Gis3 рассчитывается с учетом дополнительного исключения из графа вершин множества SH или S3 и связанных с ними дуг; вес разложения ∆Glk рассчитывается с учетом исключения из графа вершины l, а также вершин, расположенных на k-м пути из начальной вершины в вершину l и связанных с ними дуг. Известный полумарковский топологический также в сути своей графовый метод свободен от перечисленных ограничений. Судя по предварительному анализу данных, наилучшую точность должна обеспечить специализированная модель для прогноза электропотребления на основе метода сезонных кривых, применяемая для прогноза потребления энергообъединений и крупных потребителей.

Топологический а по сути графовый марковский метод применим для определенного класса систем, поведение которых описывается в основном моделями типа схемы «гибели и размножения». Экспоненциальное распределение с плотностью распределения вероятностей: Гамма-распределение с плотностью распределения вероятностей с параметром X и с порядком распределения v: Эрланговское распределение с плотностью распределения вероятностей с параметром X и с порядком распределения v >1 так как для порядка, равного 1, имеем экспоненциальное распределение: Среднее значение математическое ожидание теоретического распределения и дисперсия второй центральный момент случайной величины и гамма, и Эрланговского распределений вычисляются одинаково: Перечисленные распределения были выбраны потому, что они просто реализуются при имитационном моделировании вычислительной системы. Так, математическое ожидание теоретического распределения приравнивалось выборочному среднему, полученному по результатам наблюдений. Применение формулы Мезона позволяет значительно сократить трудоемкость вычислений миноров на разреженных матрицах, а матрица G, как правило, является разреженной. Далее, полагая отношение сигнал/шум Окончательное выражение для нормированной плотности вероятности ωλ получим из 10 и 6 функциональным преобразованием в следующем виде - дисперсия распределения; где После подстановки 13и14в8и численного решения получим зависимости рис. Что касается затрат на преодоление технических трудностей при реализации метода корреляционного приема, то они оправданы лишь Для ФМ и ОФМ сигналов ввиду очевидного выигрыша по энергетике и вероятности ошибки. Плотности вероятности смещения левой φлδ и правой границ φпрδ символа полагаем распределенными по нормальному закону, а исправляющую способность приемника принимаем равной 50%. Требуется построить модель прогноза образования порожних вагонов, состоящую из двух частей: a количественный прогноз образования порожних вагонов на отделениях сети aij , i = 1,.

I - теоретическое количество попаданий в разряд. Теоретическое количество попаданий в разряд определялось численным интегрированием теоретической плотности распределения вероятностей случайной величины на интервале от левой границы интервала до правой.

И тот, и другой интервалы t2-t1 и t3-t1 часто называют временем отклика. На основании следствия 1 определяются формульные выражения следующих показателей функциональной безопасности системы: средняя наработка до опасного отказа дисперсия наработки до опасного отказа где: где: 0,i SH; средняя наработка до защитного отказа где: ∆GisHUsH —вес разложения графа без множества опасных состояний SH и множества защитных состояний S3; дисперсия наработки до защитного отказа где значение t03-2 рассчитывается по формуле 4 во множестве работоспособных или неопасных и защитных состояний множество SH заменяется множеством S3, веса разложений ∆GsH и ∆G0sH заменяются на веса разложений ∆G0sHUsH и ∆GsHUsH соответственно; вероятность безопасной работы где: inf PБnt и sup PБt —точные значения соответственно нижней и верхней границ вероятности безопасной работы системы, рассчитанные по численным значениям первых n моментов времени пребывания системы в множестве работоспособных или неопасных состояний с помощью численного алгоритма, построенного на основе модифицированного симплекс-метода; вероятность опасного отказа где интенсивность опасного отказа где Алгоритм расчета показателей безопасности Подготовительный этап Определяют вероятности переходов р математические ожидания Ti и Tij соответственно безусловного и условного времени, а также второй и третий моменты Ti 2 и Ti 3 времени пребывания системы в каждом из состояний; определяют веса путей l0ik, lijk из начального состояния 0 во все состояния i графа системы, а также из любого i-го в любое j-ое состояние графа; определяют веса всех замкнутых контуров Сj графа. Для проверки прогноза использовалась информация за февраль 2004 г.

Фактическое и прогнозное освобождение интегрально на всех дорогах России при глубине прогноза 1 сутки Рис. Для некоторых станций массовой выгрузки например, крупных портов высокая дисперсия определения времен задержек может негативно сказаться на точности прогнозирования основной освобождаемой там части Рис. Разность между моментами времени МР и переходом через нуль огибающей сигнала тактовой частоты Fтакт = τ0-1 тождественно определяет соответствие φ = 2π·λ радиан отклонения фазы опорного колебания СТС в пределах ±π за время приема символа. Дисперсия наработки до защитного отказа системы. Ниже описывается решение этой задачи отдельно для каждой части модели. Определение вероятности ошибки регистрации методом стробирования В общем случае устройство СТС формирует стробирующие синхросигналы с некоторой случайной погрешностью {ε}. В формульном представлении начало реализации этой программы выглядит следующим образом. Метод позволяет рассчитывать требуемые в показатели функциональной безопасности и определять предельные верхние и нижние границы показателей вероятности опасного отказа и интенсивности опасного отказа системы, что дает возможность принимать надежные решения по функциональной безопасности устройств и систем. А и 66 отображены два примера графиков за три аналогичных рабочих дня вторник, среда, четверг одной недели. Коэффициенты трендов, параметры регрессии и дисперсия остатка хранятся системой и пересчитываются по скользящей выборке с переходящими периодами на следующие сутки в целом и по часам суток.

При этом известными или хорошо предсказуемыми можно считать лишь факторы, изображенные серым цветом. Графики также имеют цикличность, достигая максимумов в утренние 8-9 и вечерние часы 20 и минимумов в ночные 4-5 и дневные 13-14.

Дисперсия наработки до опасного отказа системы. Расчетными кривыми помехоустойчивости, где представлены зависимости минимума вероятности ошибки Ре при различных реальных методах узкополосного приема двоичных символов от отношения E/No. Причина, по которой был разработаны различные варианты вычисления задержек, состоит в следующем. Применительно к функциональной безопасности железнодорожной автоматики и телемеханики, а также ряд дополнительных показателей, которые имеют существенное значение для рационального проектирования безопасных систем: средняя наработка до опасного отказа ТОП, дисперсия наработки до опасного отказа DОП средняя наработка до защитного отказа ТЗ дисперсия наработки до защитного отказа DЗ, вероятность безопасной работы PБt; вероятность опасного отказа QОПt; интенсивность опасных отказов λОПt; В приведенном перечне отсутствуют установленные ОСТ 32. В зависимости от решаемой задачи в устройствах приема и обработки сигналов для повышения их помехоустойчивости осуществляют поэлементную, высокочастотную или групповую синхронизацию.

 

     >>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................









Системы передачи данных

 


Комплексные проектные решения

 


Управление распределенными системами

 


Автоматизированные рабочие места

 


Системы и средства обеспечения безопасности движения

 


Цифровые сети технологической связи

 


Информационные системы управления движением

 


Автоматизированное управление разработками проектов

 






 



Copyright (c) 2008, Infotest, Inc.