Навигация по сайту

Первый этап в управлении качеством эксплуатационной работы
российских железных дорог

Информационная подсистема многоуровневой системы управления и
обеспечения безопасности движения поездов (АСУ МС)

Автоматизированное управление разработкой проекта АСУ МС с
использованием пакета MS PROJECT

Разработка бизнес-плана инвестиционного проекта «Многоуровневая
система управления и обеспечения безопасности движения поездов»

Оценка вероятности возникновения опасных отказов при перезапуске
двухканальных систем

Интернет-технологии в управлении распределенными системами и на
железнодорожном транспорте

Статистическая обработка результатов измерений временных
характеристик web - приложений.

Структуризация тематического мониторинга геоинформационного
портала отрасли

Автоматизированное рабочее место оператора группы учета
локомотивного депо (АРМ ТЧУ)

Автоматизированное рабочее место оперативно-ситуационного
анализа диспетчерского центра управления движением поездов (АРМ ОСА)

Влияние синхронизации на помехоустойчивость приема данных
по узкополосному каналу связи

Системы и средства обеспечения безопасности движения поездов
метрополитена

Повышение эффективности использования частот диапазона 160 МГц
на железных дорогах.

Построение единой системы нумерации общетехнологической
телефонной связи (ОБТС)

Основные направления развития цифровых сетей технологической
связи ОАО «РЖД»

Особенности построения модемов в цифровых системах технологической
радиосвязи стандарта TETRA на железнодорожном транспорте

О фазовом методе повышения устойчивости сетей связи в условиях
возникновения тупиковых ситуаций

К вопросу обеспечения устойчивого функционирования систем связи
и автоматизации на железнодорожном транспорте

Перенапряжение во вторичных цепях электроустановок, питающихся
от системы электроснабжения ДПР

Реализация комплексной программы оптимизации эксплуатационной
работы сети железных дорог России

Мониторинг технического и коммерческого состояния грузовых
вагонов в системе ДИСПАРК

Определение годности грузовых вагонов для перевозок по результатам
натурного осмотра

Экономический критерий оценки эффективности вариантов использования
после выгрузки вагонов стран содружества

Обоснование новой системы взаиморасчетов за пользование грузовыми
вагонами собственности других государств с учетом дальности
перевозки грузов

Порядок гамма - распределения много меньше , поэтому рассчитывать на экспоненциальное распределение не приходится.

Результатом разработки технических норм эксплуатационной работы является решение следующих групп задач: - определение значений количественных показателей перевозочного процесса, соответствующих прогнозируемым объемам перевозок; - определение значений показателей, характеризующих качество эксплуатационной работы железнодорожного транспорта; - расчет потребных ресурсов для выполнения перевозок по сети и распределение их между ее подразделениями. По действующей на технических станциях технологии для формирования многогруппного состава требуется столько сортировочных путей и столько маневровых рейсов по сортировке вагонов и их подборке, сколько групп в составе.

В настоящее время на Октябрьской железной дороге находится в опытной эксплуатации автоматизированная система технического нормирования эксплуатационной работы дороги АСТН, отвечающая всем требованиям современного уровня развития информационных технологий. В приложениях, где необходимо обеспечить качество услуг, будет оправданной комбинация Ethernet и SDH. Если попт меньше числа введенных путей пвв, то выполняется отсечение из массива номеров путей всех «коротких» путей так, чтобы количество оставшихся путей равнялось оптимальному. Поступление длинносоставных поездов на техническую станцию, является пуассоновским; b длительность обслуживания длинносоставных поездов имеет экспоненциальное распределение. Известно, что кристаллы льда образуют снежинки при падении температуры. На вход демодулятора поступает сигнал 1. Анализ выполнения качественных показателей эксплуатационной работы Обеспечение возрастающих объемов перевозок без увеличения парка грузовых вагонов возможно только за счет повышения производительности подвижного состава. Разработка алгоритмического и программного обеспечения по всему комплексу функциональных задач ускоренного формирования многогруппных поездов и оптимизации развоза местного груза выполнена исходя из некоторого базового варианта решения задачи с постепенным наращиванием функций и адаптацией его к различным условиям работы каждой сортировочной станции. Фактически, сейчас происходит формирование новой информационной среды автоматизированного управления перевозками. Такое построение модема позволит увеличить битовую скорость передачи и обеспечит распределение нагрузки между ЦСП и ПЛИС, которая в свою очередь отвечает за цифровую фильтрацию сигнала. Кроме того, в результате регулирования порожних вагонов и прокладки струй груженых вагонопотоков определяются вагонокилометры груженого и порожнего пробегов, среднесуточные пробеги вагонов. На сегодня задачами ПСС ТС являются 1: - обеспечение необходимого сетевого межстанционного трафика; - организация линейных трактов передачи по волоконно-оптическим линиям ВОЛП и по кабелям с медными жилами КМЖ; - организация стандартных неспециализированных каналов с типовыми интерфейсами Nx64 кбит/с, 2048 кбит/с, 34368 кбит/с, ТЧ, и другие для подключения вторичных сетей; - резервирование требуемых каналов; - обеспечение тактовой сетевой синхронизации ТСС элементов сети и распределение сигналов ТСС между вторичными сетями; - взаимодействие с первичной сетью магистрального сегмента; - мониторинг и администрирование элементов сети системой управления сетью; - обеспечение требуемых качественных показателей и коэффициента готовности; - возможность дальнейшего развития сети. Тогда зависимость вероятности ошибки приема может быть получена усреднением 7 по всей области определения {λ} в виде σδ , %1015202530 P строб5·10-79,7·10-41,236·10-24,445·10-2 9,69·10-2 Пример наглядно иллюстрирует известный из практики факт невозможности получения ошибки регистрации Р строб ≤10-3при «джиггере» фронтов у принятого символа более 15% даже в случае идеальной синхронизации. Выборочные характеристики случайной величины: СРЕДНЕЕ= 0,14592692 СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ= 0,24141251 КОЭФФИЦИЕНТ ВАРИАЦИИ= 1,65433836 МИНИМАЛЬНОЕ ЗНАЧЕНИЕ XMIN=0,001 МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ ХМАХ=1,202 Гистограмма времени формирования приведена на рис. Влияющие на производительность системы, являются случайными величинами.

Отсюда: ρ = λ / μ =24 / 24 = 1 Тогда по табл. Безусловно, межоперационные простои обязательно будут, но их продолжительность может быть существенно сокращена за счет правильного планирования грузовой работы на конкретные сутки, разработки и строгого соблюдения графика движения сборных, вывозных и передаточных поездов.

Выборочные характеристики случайной величины: СРЕДНЕЕ= 1,63781538 СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ= 1,76435735 КОЭФФИЦИЕНТ ВАРИАЦИИ= 1,07726266 МИНИМАЛЬНОЕ ЗНАЧЕНИЕ XMIN=0,07 МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ ХМАХ=8,853 Как видим, порядок гамма - распределения меньше 1, хотя внешне гистограмма напоминает экспоненциальное распределение. Техническое нормирование эксплуатационной работы является одним из важнейших инструментов управления перевозочным процессом железнодорожного транспорта. В силу этого будем рассматривать b-канальную СМО b — число бригад ПТО на технической станции, где имеется ПТО с пуассоновским входящим потоком с параметром λ число длинносоставных поездов, прибывающих на техническую станцию в единицу времени и экспоненциально распределенной длительностью обслуживания с параметром μ tтех =1 μ есть средняя длительность обслуживания бригадой ПТО в стационарном режиме. В Концепции ЖТ отмечено также, что «Архитектура информационной среды должна проектироваться независимо от действующей структуры управления железнодорожным транспортом». Возможно принятие гипотезы об экспоненциальном распределении, так как коэффициент вариации случайной величины отношение среднеквадратического отклонения, корня квадратного из дисперсии, к среднему практически равен 1, а гамма - распределение с порядком, равным 1, есть не что иное, как экспоненциальное распределение. Это связано с тем, что наличие каждого из перечисленных ограничений очень существенно увеличивает количество перебираемых вариантов при поиске решения. На основании вышеизложенного можно сделать вывод о том, что вопрос повышения коэффициента использования полосы пропускания существующей сети актуален уже сегодня, поэтому следует определить порядок внедрения на ПСС ТС новых технологий, позволяющих оптимизировать использование сети и обеспечить необходимое обслуживание. Постановка задачи При управлении большими проектами встает проблема координации работы большого числа соисполнителей. Как видим, вероятность принятия гипотезы об экспоненциальном распределении весьма велика, она равна 0,93. Для сбора статистических данных о работе WEB-приложения в приложение, работающее на всех дорогах России, были встроены измерительные блоки, фиксировавшие в ходе работы приложения по обслуживанию многих одновременно работающих пользователей моменты наступления следующих событий: t0 - момент запуска стартовой страницы; t1 - момент, когда клиент нажимает кнопку ввода запроса; t2 - момент, когда начинает приходить ответ; t3 - момент, когда поступает конец ответа страница загружена полностью. Схема первого типа: Пользователь отправляет сообщение к ЭДВ и ждет ответ.

С другой стороны, по сравнению с одной централизованной базой данных, распределение данных между региональными серверами обеспечивает распределение нагрузки при запросах на чтение. Если распределение имеет один параметр, то этого уже достаточно для вычисления параметра распределения что и имеет место для экспоненциального распределения. Решение задачи с учетом ограничений на длину и вес многогруппного состава поезда. Из анализа общего выражения плотности вероятности фазы суммы гармонического сигнала и шума, при φ ≤ π базу сигнала при узкополосном приеме B=1, р=0,5 и нормальное распределение статистики переходов через ноль символов принятой последовательности, можно получить следует, что при отношении сигнал/шум g2>>1 и φ→0 закон распределения фазы на выходе простой СТС типа ограничитель -узкополосный фильтр асимптотически сводится к нормальной плотности вероятности с нулевым средним m1{φ}=0 Известные исследования системы синхронизации с ФАПЧ на основе теории марковских процессов показывают, что для больших отношений сигнал/шум допустима линеаризация режима ее работы и распределение фазы опорного колебания, например, на выходе ФАПЧ 1 порядка также может быть описана симметричной нормальной плотностью вероятности с нулевым средним где I0x - функция Бесселя первого рода нулевого порядка; D - параметр, характеризующий отношение сигнал/шум в тракте СТС. Внедряются новые системы информатизации.

Суммарная дотация на их существование от субъектов Российской Федерации менее 70 млн. Сейчас имеется ограниченный диапазон возможностей, которые обеспечивают существующие аппаратные средства и технологии передачи сигнала. При этом, как правило, первым рейсом вагоны, накопленные на одном из сортировочных путей станции, направляются с горки или с вытяжного пути на концы путей по одной группе на каждый путь в соответствии с распределением групп в составе поезда по этим путям. Из 58 пограничных железнодорожных пунктов пропуска 45 - с государствами СНГ и Балтии образованы вновь при разделении СССР и технически пока оборудованы недостаточно. ГВЦ поддерживает информационное обеспечение системы технического нормирования, включение технических норм в отчетные документы и передачу их на нижестоящий уровень управления ДЦУ. Такая перекодировка выполняется с учетом того или иного варианта проведения сортировки вагонов с горки или со стороны вытяжки.

Время отклика можно определить двумя способами, как показано на рис. Организация низкоскоростных каналов с интерфейсами ЕО, ТЧ, RS-232 и другими осуществляется гибкими первичными мультиплексорами ПЦИ, которые обладают широкой номенклатурой цифровых и аналоговых интерфейсов и имеют возможности гибкого конфигурирования. Формализованная схема подобного представления ЖТ и системы его управления верхний уровень приведена на рис.

 

     >>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................









Системы передачи данных

 


Комплексные проектные решения

 


Управление распределенными системами

 


Автоматизированные рабочие места

 


Системы и средства обеспечения безопасности движения

 


Цифровые сети технологической связи

 


Информационные системы управления движением

 


Автоматизированное управление разработками проектов

 






 



Copyright (c) 2008, Infotest, Inc.