Навигация по сайту

Первый этап в управлении качеством эксплуатационной работы
российских железных дорог

Информационная подсистема многоуровневой системы управления и
обеспечения безопасности движения поездов (АСУ МС)

Автоматизированное управление разработкой проекта АСУ МС с
использованием пакета MS PROJECT

Разработка бизнес-плана инвестиционного проекта «Многоуровневая
система управления и обеспечения безопасности движения поездов»

Оценка вероятности возникновения опасных отказов при перезапуске
двухканальных систем

Интернет-технологии в управлении распределенными системами и на
железнодорожном транспорте

Статистическая обработка результатов измерений временных
характеристик web - приложений.

Структуризация тематического мониторинга геоинформационного
портала отрасли

Автоматизированное рабочее место оператора группы учета
локомотивного депо (АРМ ТЧУ)

Автоматизированное рабочее место оперативно-ситуационного
анализа диспетчерского центра управления движением поездов (АРМ ОСА)

Влияние синхронизации на помехоустойчивость приема данных
по узкополосному каналу связи

Системы и средства обеспечения безопасности движения поездов
метрополитена

Повышение эффективности использования частот диапазона 160 МГц
на железных дорогах.

Построение единой системы нумерации общетехнологической
телефонной связи (ОБТС)

Основные направления развития цифровых сетей технологической
связи ОАО «РЖД»

Особенности построения модемов в цифровых системах технологической
радиосвязи стандарта TETRA на железнодорожном транспорте

О фазовом методе повышения устойчивости сетей связи в условиях
возникновения тупиковых ситуаций

К вопросу обеспечения устойчивого функционирования систем связи
и автоматизации на железнодорожном транспорте

Перенапряжение во вторичных цепях электроустановок, питающихся
от системы электроснабжения ДПР

Реализация комплексной программы оптимизации эксплуатационной
работы сети железных дорог России

Мониторинг технического и коммерческого состояния грузовых
вагонов в системе ДИСПАРК

Определение годности грузовых вагонов для перевозок по результатам
натурного осмотра

Экономический критерий оценки эффективности вариантов использования
после выгрузки вагонов стран содружества

Обоснование новой системы взаиморасчетов за пользование грузовыми
вагонами собственности других государств с учетом дальности
перевозки грузов

Мы имеем право получать КВИ о местоположении подвижных единиц в станционной системе координат с погрешностью.

Поэтому для анализа работы собственных вагонов по отдельным собственникам, арендованных вагонов по отдельным арендаторам, а также отдельных типов вагонов необходимо вести расчет соответствующих значений оборота вагонов за некоторый период времени, например, за месяц. Определение вероятности ошибки регистрации методом стробирования В общем случае устройство СТС формирует стробирующие синхросигналы с некоторой случайной погрешностью {ε}. Команду на начало и конец передачи телеграмм по физическому каналу связи в ЭВМ 1 отдаёт МС. Напряжение нулевой последовательности в два раза больше напряжения прямой последовательности. Ошибочная подача напряжения от ВЛ 10 кВ СЦБ может произойти в случае неправильной работы контакторов, обеспечивающих отключение вторичной цепи трансформаторов КТП ДПР и включение потребителей на резервное питание от трансформаторов КТП ВЛ 10 кВ. Обладая набором псевдодальностей минимум до 4-х НИСЗ, координаты которых известны, методом трилатерации потребитель определяет своё местоположение в пространстве абсолютным методом с погрешностью не более 30 м.

При увеличении доверительного интервала в три раза 3σ мы получаем наивероятнейшую погрешность определения местоположения подвижной единицы, равную 0. Где: C1 - распределенная емкость между контактной сетью, включая усиливающий провод, и проводом системы ДПР 1; С2- распределенная емкость «провод ДПР - земля»; Z1 — сопротивление первичной обмотки трансформатора; Z2 - сопротивление вторичной обмотки трансформатора, приведенное к первичному напряжению; ZH - сопротивление нагрузки трансформатора, приведенное к первичному напряжению; g и b - параметры схемы замещения трансформатора, определяющие соответственно потери в стали и намагничивание вебер-амперной характеристики стали. Алгоритмы процедур функционирования станционной подсистемы Входной информацией для СНО СРНС ГЛОНАСС/GPS СУДП от МС являются: команда на начало и окончание передачи координатно-временной информации МС с частотой до 1Гц и команда на перезагрузку.

И с заменой весов разложений графа ∆GsH и ∆G0sH на веса разложений ∆GsHUsH и ∆G0sHUsH соответственно. Возможные варианты перевозочных циклов работы вагона на дороге позволяют разделить весь процесс продвижения любого грузового вагона на ряд не прерывающихся в расчете циклов. По абсолютным мгновенным решениям производят определение относительных мгновенных координат относительного режима погрешность решения не более 1 м по мгновенным координатам антенн опорных ПРНС ПЗ 90 для всех возможных комбинаций созвездий НИСЗ, указанных в предыдущем абзаце.

С целью предотвращения влияния дискретной частоты fд на системы безопасности движения необходимо, чтобы удовлетворялось условие: где f’с,f’’c — соответственно значение нижнего и верхнего предела запрещенных частот. Далее станционная ЭВМ 1 производит нахождение абсолютного мгновенного ПРНС в ПЗ 90 по всем комбинациям измеренных псевдодальностей до 4 НИСЗ для каждой СРНС ГЛОНАСС или GPS, либо по каждым 5 НИСЗ СРНС ГЛОНАСС/GPS в сочетании 3 НИСЗ ГЛОНАСС, 2 НИСЗ GPS и 2 НИСЗ ГЛОНАСС, 3 НИСЗ GPS для станционных ПРНС 1 и 2. Ж; рассчитывают дисперсию наработки до опасного отказа системы по формуле 3. Зависимость минимальной разрядности СУ от составности поезда Число вагонов в поезде, твМинимальная разрядность СУ при числе фаз на вагонЧисло вагонов в поезде, твМинимальная разрядность СУ при числе фаз на вагон 398698 498187 598887 Как следует из таблицы, с целью устранения влияния дискретных частот, генерированных в контактном рельсе fд при дискретном изменении коэффициента заполнения в процессе пуска вагонов, на работу АРС и СЦБ, разрядность СУ, например, для вагонов метро должна быть не менее девяти, т. И ∆GisH Привлекательность перехода от миноров к весам разложений состоит в том, что для большого числа состояний нахождение минора становится трудоемким, а вес разложения графа находится по известной формуле Мезона: где СiСj — веса контуров на графе. При этом в расчете учитываются все вагоны, имевшиеся в базе в каждые данные сутки. На сегодняшний день в России и за рубежом созданы различные виды одно- и двухчастотной аппаратуры потребителя АП, позволяющие производить измерения времени с погрешностью не хуже 100 не, псевдодальностей до навигационных искусственных спутников Земли НИСЗ СРНС ГЛОНАСС/GPS по коду с точностью 0. Карта зон ограничения прямой видимости до НИСЗ имеет следующее функциональное назначение: обеспечение возможности отсечения дальномерной информации, полученной бортовой АП подвижной единицы от НИСЗ, прямая видимость до которого отсутствует. М; контроль получения КВР по внешней сходимости с погрешностью, не более 2 см. Применительно к рассматриваемому примеру это приводит к уменьшению фазных напряжений до 0,7 кВ фазы А и В и до 1,4 кВ фаза С. Зависимость средней вероятности ошибки Ре* на бит от отношения сигнал-шум Из сравнения кривых следует, что при изменении среднеквадратического значения нормированной ошибки синхронизации от 0 до 0,05 потери на приеме не превосходит 0,5-1,0 дБ для вероятности ошибки Ре ≥ 10-6. Правило остановки вычислений: λОП t + ∆t - λОП t < ε, где ε — заданная погрешность вычислений. Обозначим относительную погрешность синхронизации через а учет скремблирования информации и влияние на условие появления ошибки при приеме представим в виде следующего приближения где р - вероятность передачи единичного символа ; Р1λ - вероятность ошибки при последовательности символов одной полярности; Р0λ - вероятность ошибки при последовательности символов обратной полярности. Выполняя посуточно и за период такой расчет для каждого рода подвижного состава, получим оборот для дороги соответственно: крытых вагонов, полувагонов, платформ и т. Возможны и другие технические решения по снижению перенапряжений в системе ДПР. Заключение Предложенный графовый метод моментов пригоден для расчетов показателей функциональной безопасности различных устройств и систем железнодорожной автоматики и телемеханики, сетей передачи данных оперативно-технологического назначения, систем цифровой радиосвязи на железнодорожном транспорте. Команду на начало и конец передачи телеграмм по каналу цифровой радиосвязи отдаёт МС. Интенсивность опасных отказов системы оценивается по формуле 8 с помощью итерационной процедуры, в которой на каждом шаге уменьшается интервал наблюдения ∆t. Перечень подсистем, их структура и функциональное назначение Система СНО СРНС ГЛОНАСС/GPS СУДП имеет следующую структуру: 1. С учётом наиболее оптимальных созвездий НИСЗ для каждой бортовой подсистемы производится нахождение абсолютного мгновенного решения.

Определение местоположения и векторов скорости самостоятельных подвижных единиц на путевом развитии с погрешностью, не более 1 м. Из анализа общего выражения плотности вероятности фазы суммы гармонического сигнала и шума, при φ ≤ π базу сигнала при узкополосном приеме B=1, р=0,5 и нормальное распределение статистики переходов через ноль символов принятой последовательности, можно получить следует, что при отношении сигнал/шум g2>>1 и φ→0 закон распределения фазы на выходе простой СТС типа ограничитель -узкополосный фильтр асимптотически сводится к нормальной плотности вероятности с нулевым средним m1{φ}=0 Известные исследования системы синхронизации с ФАПЧ на основе теории марковских процессов показывают, что для больших отношений сигнал/шум допустима линеаризация режима ее работы и распределение фазы опорного колебания, например, на выходе ФАПЧ 1 порядка также может быть описана симметричной нормальной плотностью вероятности с нулевым средним где I0x - функция Бесселя первого рода нулевого порядка; D - параметр, характеризующий отношение сигнал/шум в тракте СТС.

 

     >>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................









Системы передачи данных

 


Комплексные проектные решения

 


Управление распределенными системами

 


Автоматизированные рабочие места

 


Системы и средства обеспечения безопасности движения

 


Цифровые сети технологической связи

 


Информационные системы управления движением

 


Автоматизированное управление разработками проектов

 






 



Copyright (c) 2008, Infotest, Inc.